Multidomain synthetic peptide B2A2 synergistically enhances BMP-2 in vitro.

نویسندگان

  • Xinhua Lin
  • Paul O Zamora
  • Sarah Albright
  • John D Glass
  • Louis A Peña
چکیده

UNLABELLED A multidomain, synthetic peptide designated B2A2 synergizes the activity of BMP-2. B2A2 interacts with BMP receptor isoforms, potentiating the action of BMP-2 in activating alkaline phosphatase and triggering Smad and MAPK signaling. B2A2's design permits its delivery as a local surface coating as well as a soluble co-factor, thus broadening potential bioengineering applications. INTRODUCTION BMP-2 induces osteogenic differentiation and accelerates bone repair. Although BMP-2 inhibitors have been discovered, no BMP-2 mimetics or enhancers that function in the physiological range have yet been found. Here we report that a synthetic peptide designated B2A2, consisting of (1) a BMP receptor-targeting sequence, (2) a hydrophobic spacer, and (3) a heparin-binding sequence, is a positive modulator of recombinant BMP-2. MATERIALS AND METHODS Cultures of mesenchymal cell lines C2C12 and C3H10T1/2 were given B2A2, recombinant BMP-2, or both. Alkaline phosphatase (ALP) activity was assayed by conversion of paranitrophenol phosphate (PNPP). Signaling through Smad and MAP kinase pathways was monitored by Western blot. Receptor binding was assessed by incubating immobilized B2A2 with soluble recombinant receptor-Fc chimeras and detecting bound receptor by anti-Fc antibody ELISA. Surface coating of medical device materials was done by first dip-coating with silyl-heparin, followed by B2A2. RESULTS AND CONCLUSIONS Treatment of cells with B2A2 alone marginally increased ALP activity. However, B2A2 plus BMP-2 resulted in 5- to 40-fold augmentation of ALP compared with BMP-2 alone in C3H10T1/2 or C2C12 cells, respectively. This synergistic enhancement was observed over a broad concentration range (4-1000 ng/ml BMP-2). B2A2 interacted directly with BMP receptor isoforms (preferentially to BMPR-Ib and ActivinR-II). In cells, B2A2 + BMP-2 led to a repression of MAP kinase and an increase of Smad activation, consistent with known activation pathways of BMP-2. B2A2 was ineffective when paired with other cytokine/growth factors (basic fibroblast growth factor [FGF-2], TGF-beta1, vascular endothelial growth factor [VEGF]). Simultaneous co-administration was not strictly required. Pulse-chase experiments revealed that temporal separations up to 1 h were still effective. B2A2 was also effective when delivered in a polystyrene- or stainless steel-coated surface through a heparin platform (silyl-heparin) while BMP-2 was added exogenously in solution. These results suggest that B2A2 might promote aggregation of receptor subunits, enabling BMP-2 to activate signaling pathways at effectively lower concentrations. Synthetic multidomain constructs like B2A2 may be useful to accelerate bone repair/deposition through augmentation of endogenous levels of BMP-2 or through local BMP-2 contained in artificial or engineered matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinoic acid stimulates chondrocyte differentiation and enhances bone morphogenetic protein effects through induction of Smad1 and Smad5.

Whereas bone morphogenetic protein (BMP)-signaling events induce maturational characteristics in vitro, recent evidence suggests that the effects of other regulators might be mediated through BMP-signaling events. The present study examines the mechanism through which retinoic acid (RA) stimulates differentiation in chicken embryonic caudal sternal chondrocyte cultures. Both RA and BMP-2 induce...

متن کامل

A Synthetic Collagen-binding Arg-gly-asp (rgd) Biomimetic Peptide Enhances Bone Cell Differentiation

RGD (arginine-glycine-aspartic acid) peptides have shown some promising abilities to promote the attachment of cells to biomaterials and to direct their differentiation. However, anchoring these peptides to the biomaterial’s surface is mandatory and usually implies several chemical linking steps. The aim of this work was to design and characterize a synthetic RGD biomimetic peptide that include...

متن کامل

Vascular endothelial growth factor synergistically enhances bone morphogenetic protein-4-dependent lymphohematopoietic cell generation from embryonic stem cells in vitro.

The totipotent mouse embryonic stem (ES) cell is known to differentiate into cells expressing the beta-globin gene when stimulated with bone morphogenetic protein (BMP)-4. Here, we demonstrate that BMP-4 is essential for generating both erythro-myeloid colony-forming cells (CFCs) and lymphoid (B and NK) progenitor cells from ES cells and that vascular endothelial growth factor (VEGF) synergizes...

متن کامل

Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2.

Although bone morphogenetic proteins (BMPs) are clinically useful for bone regeneration, large amounts are required to induce new bone formation in monkeys and humans. We found recently that heparin stimulates BMP activity in vitro (Takada, T., Katagiri, T., Ifuku, M., Morimura, N., Kobayashi, M., Hasegawa, K., Ogamo, A., and Kamijo, R. (2003) J. Biol. Chem. 278, 43229-43235). In the present st...

متن کامل

Comparison of liposomal formulations incorporating BMP-2 peptide to induce bone tissue engineering

Objective(s): Fabricating a biomimetic scaffold platform combined with controlled release of bioactive agents is a practical approach for bone tissue engineering. Controlled delivery of peptides and growth factors which play a significant role in osteogenesis is an important issue reducing the associated adverse effects and leading to cost-effectiveness. Materials and Methods: We develope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2005